This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Minggu, 30 Oktober 2016

Bagaimana mungkin ada sungai di dalam laut? ini dia jawabannya..

Pernahkah kalian mendengar atau membaca bahwa di dunia ini ternyata ada sungai di dalam laut?? bagaimana mungkin airnya tawar dari sungai dapat mengalir tanpa bercampur dengan air asin dari laut??


Ternyata Allah telah menjelaskannya melalui Al Quran tentang fenomena itu. Dalam surah Al-Furqan [25] ayat 53: ”Dan Dialah yang membiarkan dua laut mengalir (berdampingan); yang ini tawar dan segar dan yang lain sangat asin lagi pahit; dan Dia Jadikan antara keduanya dinding dan barat yang tidak tembus.”
Kemudian telah disebutkan pula dalam surah Ar-Rahman [55] ayat 19-21: ”Dia membiarkan dua laut mengalir yang kemudian keduanya bertemu, di antara kedua ada batas yang tidak dilampaui masing-masing. Maka nikmat Tuhanmu yang manakah yang kamu dustakan.”
Sungai di bawah laut ini ditemukan di dasar laut Cenote Angelita Mexico. Seorang fotografer profesional dalam deskripsinya mengenai Cenote Angelita, Anatoly Beloschin pernah mengatakan:
“We are 30 meters deep, fresh water, then 60 meters deep-salty water and under me I see a river, island, and fallen leaves.”
“Di kedalaman 30 meter, air tawar, lalu pada kedalaman 60 meter, air asin, dan dibawah saya melihat sebuah sungai, pulau dan daun-daun yang jatuh.”
Dari pernyataan Anatoly Beloschin di atas, dapat disimpulkan bahwa air tawar berada di atas air asin. Bagaimana mungkin air asin dan air tawar tidak tercampur?
Jawabannya adalah karena sebuah fenomena yang disebut Halocline.
Halocline adalah sebuah zona vertikal di dalam laut dimana kadar garam berubah dengan cepat sejalan dengan perubahan kedalaman. Perubahan kadar garam ini akan mempengaruhi kepadatan air sehingga Zona ini kemudian berfungsi sebagai dinding pemisah antara air asin dan air tawar.
Air asin memiliki kepadatan yang lebih besar dibandingkan air tawar. Ini membuatnya memiliki berat jenis yang juga lebih besar. Karena itu wajar kalau air tawar berada di atas air asin. Ketika kedua jenis air ini bertemu, ia akan membuat lapisan halocline yang berfungsi menjadi pemisah antara keduanya. Peristiwa ini tidak terjadi di semua pantai atau bagian di laut, namun cukup umum terjadi di gua-gua air yang terhubung ke laut seperti halnya Cenote.
Perbatasan antara air asin dan air tawar (Halocline) pada Cenote Angelita berada pada kedalaman sekitar 33 meter. Dalam kasus Cenote ini, air tawar yang berada di permukaan berasal dari air hujan.
Agar lebih jelas, mari simak video di bawah ini!.. ;)

fenomena aneh di Selat Gibraltar telah disebutkan dalam Al-Qur'an

Fenomena alam berupa dua lautan yang tidak bercampur di Selat Gibraltar telah mengundang keheranan sekaligus decak kagum dunia. Selat Gibraltar memisahkan benua Afrika dan Eropa, tepatnya antara negara Maroko dan Spanyol.
Di selat itu terdapat pertemuan dari dua jenis laut yang berbeda. Perbedaan itu akan sangat terlihat jelas dari warna lautnya. Bahkan ada garis batas yang memisahkan keduanya, dan uniknya air dari kedua sisi lautan itu tak bercampur satu sama lain.
Melihat fenomena tak lazim itu banyak ilmuwan tertarik untuk menelitinya. Hingga akhirnya ditemukan fakta bahwa penyebab tak bercampurnya air laut di sana akibat adanya perbedaan masa jenis air.
Tegangan permukaan mencegah kedua air dari lautan tidak bercampur satu sama lain, seolah terdapat dinding tipis yang memisahkan mereka.
Namun jauh sebelum ilmuwan meneliti fenomena aneh di Selat Gibraltar, Al-Quran telah lebih dulu menyebutkannya sejak 15 abad lalu.
Ada beberapa surat dalam Al-Quran yang mengisahkan tentang fenomena ini, seperti Surat Ar-Rahman ayat 19-20 yang berbunyi:
" Dia membiarkan dua lautan mengalir yang keduanya kemudian bertemu. Antara keduanya ada batas yang tidak dilampaui maisng-masing." (Q.S. Ar-Rahman: 19-20)
Adapula ayat lain yang menyebutkan fenomena serupa, yakni Surat Al-Furqan ayat 53 yang berbunyi:
" Dan Dialah yang membiarkan dua laut yang mengalir (berdampingan); yang ini tawar lagi segar dan yang lain asin lagi pahit; dan Dia jadikan antara keduanya dinding dan batas yang menghalangi." (Q.S. Al-Furqaan: 53)

source:
http://www.dream.co.id/your-story/fenomena-aneh-di-selat-gibraltar-buktikan-kebenaran-al-quran-151021v.html
http://gadgetandtechnology2016.blogspot.co.id/2016/02/inilah-bukti-kebenaran-dari-surat-ar.html
http://gadgetandtechnology2016.blogspot.co.id/2016/02/inilah-bukti-kebenaran-dari-surat-ar.html

Kelahiran Kembali Alam Semesta

Kebanyakan kosmolog menelusuri kelahiran alam semesta sampai ke Ledakan Dahsyat 13,7 milyar tahun lalu. Namun analisis baru terhadap sisa-sisa radiasi yang dihasilkan oleh peristiwa ledakan tersebut mengindikasikan bahwa alam semesta mulai diciptakan milyaran tahun sebelumnya dan telah melalui banyak sekali peristiwa kelahiran dan kematian, dan Ledakan Dahsyat hanya merupakan kejadian terakhir pada rentetan ledakan-ledakan pencetus

Pemikiran mengejutkan tersebut yang dikemukakan oleh fisikawan teoritis Roger Penrose dari Universitas Oxford di Inggris dan Vahe Gurzadyan dari Institut Fisika Yerevan dan Universitas Yerevan di Armenia, melawan arus teori standar kosmologi yang dikenal dengan inflasi atau inflation.

Para peneliti mendasarkan penemuan mereka pada pola-pola sirkuler yang mereka temukan pada latar gelombang mikro (microwave) alam semesta yaitu cahaya gelombang mikro yang tersisa dari Ledakan Dahsyat. Elemen-elemen sirkulernya mengindikasikan bahwa alam semesta itu sendiri bersiklus melewati periode-periode akhir dan awal, tegas Penrose dan Gurzadyan.

Elemen-elemen sirkuler tersebut merupakan daerah di mana variasi-variasi temperatur dalam latar keseragaman gelombak mikro lainnya lebih kecil dari rata-rata. Penrose mengatakan bahwa elemen-elemen tersebut tidak dapat dijelaskan oleh teori inflasi yang sangat sukses tersebut, yang menghipotesakan bahwa alam semesta yang baru tercipta mengalami semburan pertumbuhan yang sangat besar, membalon dari sesuatu pada skala ukuran sebuah atom menjadi berukuran satu buah anggur selama sepersekian detik pertama alam semesta. Inflasi akan menghapus pola-pola seperti itu.

"Keberadaan elemen-elemen koheren berskala besar pada latar gelombang mikro bentuk ini, nampaknya akan berkontradiksi dengan model inflasioner dan akan menjadi penanda yang sangat berbeda dari model Penrose tentang alam semesta siklik," kosmolog David Spergel dari Universitas Princeton berkomentar. Namun, dia menambahkan, "Makalah tersebut tidak memberikan cukup rincian mengenai analisis untuk menilai realitas lingkaran-lingkaran ini." Demikian seperti yang dikutip dari ScienceNews (26/11/10).

Penrose menginterpretasikan lingkaran-lingkaran tersebut sebagai sesuatu yang menyediakan sarana untuk melihat ke masa lalu, melewati tembok kaca Ledakan Dahsyat paling terakhir, menuju periode alam semesta sebelumnya. Dia mengemukakan bahwa lingkaran-lingkaran tersebut dihasilkan oleh tabrakan antara lubang-lubang hitam raksasa yang terjadi selama periode sebelumnya tersebut. Tabrakan lubang-lubang hitam akan menciptakan disonansi gelombang gravitasional yang berdesir dalam waktu ruang dikarenakan akselerasi massa raksasa tersebut. Gelombang-gelombang itu akan terdestribusi secara sirkuler dan seragam.

Menurut rincian matematis yang dikerjakan Penrose, ketika distribusi seragam gelombang gravitasional dari periode sebelumnya tersebut memasuki periode sekarang, mereka terkonversi ke dalam pulsa energi. Pulsa tersebut menyediakan satu tendangan seragam ke porsi materi gelap yang merupakan material tak kelihatan yang membentuk lebih dari 80 persen massa alam semesta.

"Oleh sebab itu material materi gelap di sepanjang ledakan tersebut memiliki ciri seragam ini," tutur Penrose. "Inilah yang terlihat sebagai sebuah lingkaran pada langit latar gelombang mikro alam semesta kita, dan hal tersebut seharusnya terlihat seperti lingkaran yang cukup seragam."

Setiap lingkaran memiliki variasi temperatur lebih rendah dari rata-rata, seperti yang dia dan Gurzadyan temukan ketika mereka menganalisa data dari alat luar angkasa Wilkinson Microwave Anisotropy Probe milik NASA, disingkat WMAP, yang memindai keseluruhan langit selama sembilan tahun, dan eksperimen balloon-borne BOOMERANG yang meneliti latar gelombang mikro di sebagian kecil alam semesta.

Oleh karena tim tersebut menemukan elemen-elemen sirkuler yang sama dengan menggunakan dua detektor, Penrose mengatakan tidak mungkin dia dan para koleganya tertipu oleh noise instrumental atau benda-benda lainnya.

Namun Spergel mengatakan bahwa dia kuatir jangan-jangan tim tersebut belum memperhitungkan variasi tingkat noise data WMAP yang didapatkan dari bagian-bagian langit yang berbeda. WMAP memeriksa berbagai daerah langit dengan alokasi waktu yang tidak sama. Peta-peta latar gelombang mikro yang dihasilkan dari daerah-daerah tersebut mempelajari yang terlama memiliki noise lebih rendah dan variasi-variasi lebih kecil yang terekam pada temperatur cahaya gelombang mikro tersebut. Peta-peta dengan noise yang lebih rendah tersebut secara artifisial dapat menghasilkan lingkaran-lingkaran yang Penrose dan Gurzadyan atribusikan ke model alam semesta siklik mereka, kata Spergel.

Peta baru latar gelombang mikro alam semesta yang lebih rinci, yang sekarang sedang dikerjakan oleh the European Space Agency’s Planck mission, bisa menyediakan uji yang lebih definitif terhadap teori tersebut, tutur Penrose.

Penemuan kontroversial tersebut dipublikasikan di arXiv.org (17/11/10).

http://arxiv.org/abs/1011.3706

Satu Jam Dua Waktu: Saat Mekanika Kuantum Bertemu Relativitas Umum


"Ini adalah paradoks kembar untuk 'anak tunggal' kuantum, dan membutuhkan relativitas umum serta mekanika kuantum. Interaksi antara kedua teori ini belum pernah diselidiki dalam percobaan."

Penyatuan mekanika kuantum dan relativitas umum Einstein merupakan salah satu pertanyaan yang paling menarik dan masih terbuka dalam fisika modern. Dalam relativitas umum, gabungan teori gravitasi, ruang dan waktu memberikan prediksi-prediksi yang menjadi bukti jelas pada skala kosmik bintang dan galaksi. Di sisi lain, efek kuantum bersifat rapuh dan biasanya terobservasi pada skala kecil, misalnya ketika mempertimbangkan partikel tunggal dan atom. Itulah mengapa sangat sulit untuk menguji interaksi antara mekanika kuantum dan relativitas umum.

Kini, fisikawan teoritis yang dipimpin Prof. Caslav Brukner dari Universitas Wina mengusulkan suatu eksperimen baru yang dapat mengamati ketumpangtindihan dari kedua teori tersebut. Fokus pekerjaan ini adalah mengukur konsep waktu relativistik umum pada skala kuantum. Temuan ini dipublikasikan minggu ini dalam Nature Communications.

Salah satu prediksi kontraintuitif relativitas umum Einstein adalah gravitasi mendistorsi aliran waktu. Teori ini memprediksi bahwa jam berdetak lebih lambat di dekat objek yang besar dan berdetak semakin cepat saat semakin menjauh dari massa. Efek ini menghasilkan “paradoks kembar”: jika salah satu kembar bergerak keluar untuk tinggal di ketinggian yang lebih tinggi, maka usianya akan lebih cepat dari usia kembar lain yang tetap tinggal di darat. Efek ini telah tepat diverifikasi dalam percobaan klasik, namun tidak dalam hubungannya dengan efek kuantum, yang merupakan tujuan dari percobaan baru yang diusulkan kali ini.

Kelompok peneliti Wina ingin mengeksploitasi kemungkinan yang luar biasa bahwa sebuah partikel kuantum tunggal dapat kehilangan properti klasiknya dalam memiliki posisi yang didefinisikan dengan baik, atau sebagaimana yang diutarakan dalam istilah mekanik kuantum: ia dapat berada dalam “superposisi”. Hal ini memungkinkan untuk efek seperti-gelombang, yang disebut interferensi, dengan sebuah partikel tunggal. Namun, jika posisi partikel diukur, atau bahkan jika secara prinsip dapat diketahui, maka efek ini menghilang. Dengan kata lain, tidak mungkin mengamati interferensi dan sekaligus mengetahui posisi partikel. Hubungan antara informasi dan interferensi merupakan contoh komplementaritas kuantum – prinsip yang diusulkan oleh Niels Bohr.

Usulan eksperimental yang sekarang dipublikasikan dalam Nature Communications ini menggabungkan prinsip tersebut dengan “paradoks kembar” dari relativitas umum.
Tim riset Universitas Wina beranggapan bahwa sebuah jam tunggal (partikel dengan perkembangan derajat kebebasan internal seperti spin) dibawa dalam superposisi dari dua lokasi – yang satu lebih dekat dan yang yang satunya lagi lebih jauh dari permukaan bumi.

Berdasarkan relativitas umum, jam berdetak pada tingkat yang berbeda pada dua lokasi, dalam cara yang sama seperti dua kembar yang berbeda usia. Tapi karena waktu yang diukur dengan jam mengungkapkan informasi di mana jam itu terletak, interferensi dan sifat-gelombang jam menjadi menghilang.
“Ini adalah paradoks kembar untuk ‘anak tunggal’ kuantum, dan membutuhkan relativitas umum serta mekanika kuantum. Interaksi antara kedua teori ini belum pernah diselidiki dalam percobaan,” kata Magdalena Zych, penulis utama makalah dan anggota Program Doktor CoQuS Wina. Dengan demikian, ini merupakan usulan pertama untuk percobaan yang memungkinkan pengujian gagasan waktu relativistik umum dalam hubungannya dengan komplementaritas kuantum.
Kredit: Universitas Wina
Jurnal: M. Zych, F. Costa, I. Pikovski, C. Brukner. Quantum interferometric visibility as a witness of general relativistic proper time. Nature Communications, 18 October 2011. DOI: 10.1038/ncomms1498

Menembus batas Fisika klasik: Sifat Mekanika Kuantum Cahaya


Dengan argumentasi sederhana, para peneliti menunjukkan kalau alam itu rumit! Para peneliti dari lembaga
Niels Bohr membuat eksperimen sederhana yang menunjukkan kalau alam melanggar akal sehat – dunia berbeda dari sebagian besar orang percaya.

Hasil ini diterbitkan dalam jurnal ilmiah   Physical Review Letters.

Dalam fisika ada dua kategori: fisika klasik dan fisika kuantum. Dalam fisika klasik, objek misalnya mobil atau bola, memiliki posisi dan kecepatan. Ini bagaimana kita secara klasik melihat dunia kita sehari-hari. Di dunia kuantum, benda dapat juga memiliki posisi dan kecepatan, namun tidak di saat yang sama. Bukan semata karena kita tidak tahu posisi dan kecepatan, tapi, kedua hal ini memang tidak dapat ada secara bersamaan. Namun bagaimana kita tahu kalau mereka tidak ada secara serempak? Dan dimana perbatasan dari kedua dunia ini? Para peneliti telah menemukan cara baru menjawab pertanyaan ini.

Cahaya pada mekanika kuantum

“Tujuan kami adalah memakai mekanika kuantum dengan cara baru. Karenanya penting bagi kita untuk tahu kalau sebuah sistem memang berperilaku yang tidak dapat memiliki penjelasan klasik. Pada sisi ini, kami pertama kali memeriksa cahaya,” kata Eran Kot, mahasiswa PhD di tim peneliti, Quantum Optics di Niels Bohr Institute University of Copenhagen.

Berdasarkan sederetan eksperimen di lab optika kuantum, mereka memeriksa keadaan cahaya. Dalam fisika klasik, cahaya memiliki medan listrik dan medan magnet sekaligus.

“Apa yang ditunjukkan oleh studi kami adalah cahaya dapat memiliki medan magnet dan medan listrik, namun tidak secara bersamaan. Kami kemudian memberi bukti sederhana kalau eksperimen memecah prinsip klasik. Dapat dikatakan kalau kami menunjukkan kalau cahaya memiliki sifat kuantum, dan kita dapat memperluas ini pada sistem lain juga,” kata Eran Kot.

Mekanika klasik dan non-klasik

Tujuan penelitian ini adalah memahami dunia secara mendasar, namun ada juga tantangan praktis untuk mengeksploitasi mekanika kuantum dalam konteks yang lebih luas. Bagi cahaya tidaklah mengejutkan kalau ia berperilaku mekanis kuantum, namun metode lain juga sedang dikembangkan untuk mempelajari sistem lain.

“Kami berusaha mengembangkan komputer kuantum masa depan dan kami karenanya perlu memahami batasan dimana sesuatu berperilaku mekanis kuantum dan kapan ia berperilaku mekanis klasik,” kata profesor fisika kuantum, Anders S Sorensen, menjelaskan kalau komputasi kuantum harusnya tersusun dari sistem-sistem dengan sifat non klasik.

Sumber berita: University of Copenhagen.

Referensi jurnal:

Eran Kot, Niels Grønbech-Jensen, Bo M. Nielsen, Jonas S. Neergaard-Nielsen, Eugene S. Polzik and Anders S.